If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+84n=1
We move all terms to the left:
n^2+84n-(1)=0
a = 1; b = 84; c = -1;
Δ = b2-4ac
Δ = 842-4·1·(-1)
Δ = 7060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7060}=\sqrt{4*1765}=\sqrt{4}*\sqrt{1765}=2\sqrt{1765}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-2\sqrt{1765}}{2*1}=\frac{-84-2\sqrt{1765}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+2\sqrt{1765}}{2*1}=\frac{-84+2\sqrt{1765}}{2} $
| 288=-6(7v-6) | | 4(2a-1)-a-4=-1 | | 22x+140=180 | | w+|−2.8|=4.3 | | x+21=4x-39 | | 2/3y+11/12=7/4 | | -174=6(1+5m) | | 10(3y-2)=10 | | 3/10x+18=3 | | u÷16=26 | | 5*x+2=15 | | 2x+20=x+16 | | (z/3)-(1/z)=(7z+5/21) | | 5*(x+2)=15 | | 3x+-95=x+25 | | 6a-8=4a+62a | | 3-(-5-2p)-(-2+3p)=|-2|-(2p-5)-(-4p+3) | | -2(-4x-2)-5x=5=-12 | | 5(x-1)=15-5x | | 3x+3=873 | | -10f+7=37 | | 3-(-5-2p)-(-2+3p)=|-2|-(2p-5)-(4p+3) | | 1/2-3=x+2 | | 8x+2=72+ | | 3x+21=-x-3 | | 5(2x=2)=20 | | 2k+9=7-2k | | -10-11+24=3x | | 10x-5+3=22 | | 2x-22/7=4 | | 2(7z-7)=14 | | 100x+99-1x=99 |